Asymptotic expansions of radial integrals for Dirac-Coulomb functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 11 L237
(http://iopscience.iop.org/0305-4470/11/10/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:10

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Asymptotic expansions of radial integrals for Dirac-Coulomb functions

K K Sud and A R Sud
Physics Department, University of Jodhpur, Jodhpur-342001, Rajasthan, India

Received 12 July 1978

Abstract

An asymptotic expansion of the Appell's hypergeometric function $F_{2}\left(\alpha, a_{1}, a_{2}\right.$, $b_{1}, b_{2} ; x, y$) is given for the case when all of its five parameters are large. This result is useful for calculating the radial integrals involving higher angular momentum components in electron wavefunctions.

1. Introduction

The radial matrix elements which arise in the distorted wave Born approximation (DWBA) analysis of an electron scattering in the Coulomb field of the nucleus can be expressed in term of Appell's hypergeometric function F_{2} (Überall 1971). Appell's hypergeometric function F_{2} is a doubly infinite series:

$$
\begin{equation*}
F_{2}\left(\alpha, a_{1}, a_{2}, b_{1}, b_{2} ; x, y\right)=\sum_{m, n} \frac{(\alpha)_{m+n}\left(a_{1}\right)_{m}\left(a_{2}\right)_{n}}{\left(b_{1}\right)_{m}\left(b_{2}\right)_{n} m!n!} x^{m} y^{n} \tag{1}
\end{equation*}
$$

which is convergent for $|x|+|y|<1$ (Erdélyi et al 1953). The variables of the F_{2} function which occur in calculations of the virtual photon spectrum (inelastic electron scattering) and bremsstrahlung do not satisfy the conditions of convergence. Such F_{2} functions require analytic continuation relations which are given in the literature (Gargaro and Onley 1971, Sud and Wright 1976, Sud et al 1976). The continuation relations are given in terms of five doubly infinite series (Sud and Wright 1976) and in terms of three series (Gargaro and Onley 1976, Sud and Wright 1976). We shall use the continuation given in terms of three doubly infinite series. The expression for the virtual photon spectrum is given in $\S 2$ in terms of an infinite sum over positive definite terms in equation (4), a similar type of expression exists for the bremsstrahlung. The term involving large partial waves corresponds to distant collisions which emit relatively small numbers of photons, yet the series is extremely slowly converging. Consequently, the calculations of the virtual photon spectrum and the bremsstrahlung cross section become very time consuming. In this Letter we give a method to compute the radial matrix elements for terms involving higher angular momentum components in the electron wavefunctions. In $\S 2$ it is shown that Appell's F_{2} function for such matrix elements has all its five parameters very large. The F_{2} function and the associated series to which it is continued have Barne's integral representations (Slater 1966). In § 3 Barne's integral representations for Q_{1}, Q_{2} and F_{3} functions are used to obtain the asymptotic expansion for the F_{2} function.

2. Radial integrals for Dirac-Coulomb functions

Here we shall give the expression for the virtual photon spectrum and show that the radial integrals can be evaluated by computing Appell's hypergeometric function F_{2}. For a relativistic electron in the Coulomb field of a point nucleus, the radial wavefunctions are the solutions of the Dirac equation with $V=-\mathrm{Ze}^{2} / \mathrm{r}$:

$$
\begin{equation*}
\left(\alpha \cdot p+\beta m_{e}+V\right) \psi=E \psi \tag{2}
\end{equation*}
$$

where

$$
\alpha_{i}=\left[\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right], \quad \beta=\left[\begin{array}{cc}
I_{2} & 0 \\
0 & -I_{2}
\end{array}\right]
$$

and $\sigma_{i}, i=1,2,3$, are the Pauli spin matrics, I_{2} is the 2×2 unit matrix. The solutions of the equation (2) (Rose 1961) have the form

$$
\psi_{\kappa}^{\mu}=\left[\begin{array}{cc}
g_{\kappa} & x_{\kappa}^{\mu} \\
i f_{\kappa} & x_{-\kappa}^{\mu}
\end{array}\right]
$$

The spin-angle functions χ_{κ}^{μ} and $\chi^{\mu}{ }_{\kappa}$ are eigenfunctions of the operator $\boldsymbol{K}=(\boldsymbol{\sigma}, \boldsymbol{L}+1)$ with eigenvalues $-\kappa$ and κ respectively, and μ is the eigenvalue of the third component of total angular momentum.

The normalised wavefunctions f_{κ} and g_{κ} are given as

$$
\begin{align*}
&\left\{\begin{array}{l}
f_{\kappa} \\
g_{\kappa}
\end{array}\right\}=\left\{\begin{array}{c}
-\left(E-m_{\mathrm{e}}\right) / p \\
1
\end{array}\right\} \frac{(p r)^{\gamma-1} 2^{\gamma} \mathrm{e}^{\pi / 2}|\Gamma(\gamma+\mathrm{i} \eta)|}{\Gamma(2 \gamma+1)} \\
& \times\left\{\frac{\mathrm{Im}}{\operatorname{Re}}\right\}\left[(\gamma+\mathrm{i} \eta) \mathrm{e}^{-\mathrm{i}(p r-\phi)}{ }_{1} F_{1}(\gamma+1+\mathrm{i} \eta, 2 \gamma+1 ; 2 \mathrm{i} p r)\right] \tag{3}
\end{align*}
$$

where

$$
\begin{aligned}
& p=\left(E^{2}-m_{\mathrm{e}}^{2}\right)^{1 / 2}, \quad \gamma=\left(\kappa^{2}-\alpha^{2} Z^{2}\right)^{1 / 2}, \quad \eta=\alpha Z E / p \\
& \mathrm{e}^{2 \mathrm{i} \phi}=\mathrm{e}^{-\mathrm{i} \pi \frac{\kappa-\mathrm{i} \alpha Z m_{\mathrm{e}} / p}{\gamma+\mathrm{i} \eta}, \quad-\pi<\phi<0 .}
\end{aligned}
$$

The phase shift of this solution is

$$
-\arg \left|\Gamma(\gamma+\mathrm{i} \eta)+\phi-\frac{1}{2} \pi+\frac{1}{2}\right| \kappa|\pi|
$$

The subscript 1 (or 2) will be used to denote the incident (final) state of the electron. The expression for the virtual photon spectrum (for details see Gargaro and Onley 1971), is given as

$$
\begin{align*}
N^{(\lambda L)}\left(E_{1}, W\right) & =\frac{\alpha}{\pi} \frac{p_{2}}{p_{1}} \frac{\left(E_{1}+m_{e}\right)\left(E_{2}+m_{e}\right) W^{4}}{2 L+1} \\
& \times \sum_{\kappa_{1} \kappa_{2}} S(\lambda)\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)\left|C\left(j_{1}, j_{2}, L ;-\frac{1}{2}, \frac{1}{2}\right) R^{\lambda}\left(\kappa_{1}, L, \kappa_{2}\right)\right|^{2} \tag{4}
\end{align*}
$$

where $E_{2}=E_{1}-W$; and the operator $S(\lambda)$ enforces the selection rule; $l_{1}+l_{2}+L$ is even for electric transitions and odd for magnetic transitions. We also have

$$
j=|k|-\frac{1}{2} ; \quad l= \begin{cases}\kappa & \text { for } \kappa>0 \\ \kappa-1 & \text { for } \kappa<0 .\end{cases}
$$

The radial integrals involve products of incoming and outgoing electron wavefunctions and the radial part of the electromagnetic Green function. The explicit expressions are given as

$$
\begin{align*}
R^{(\mathrm{EL})}\left(\kappa_{1}, \kappa_{2},\right. & W) \\
= & \left(\frac{L}{L+1}\right)^{1 / 2} \int_{0}^{\infty} r^{2} \mathrm{~d} r\left[h_{L-1}^{1}(W r)\left(f_{\kappa_{1}}\left(p_{1} r\right) g_{\kappa_{2}}\left(p_{2} r\right)-g_{\kappa_{1}}\left(p_{1} r\right) f_{\kappa_{2}}\left(p_{2} r\right)\right)\right. \\
& +\left(\frac{\kappa_{1}-\kappa_{2}}{L}\right) h_{L-1}^{1}(W r)\left(f_{\kappa_{1}}\left(p_{1} r\right) g_{\kappa_{2}}\left(p_{2} r\right)+g_{\kappa_{1}}\left(p_{1} r\right) f_{\kappa_{2}}\left(p_{2} r\right)\right) \\
& \left.-h_{\mathrm{L}}^{1}(W r)\left(f_{\kappa_{1}}\left(p_{1} r\right) f_{\kappa_{2}}\left(p_{2} r\right)+g_{\kappa_{1}}\left(p_{1} r\right) g_{\kappa_{2}}\left(p_{2} r\right)\right)\right] \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
& \mathrm{R}^{(\mathrm{M} L)}\left(\kappa_{1}, \kappa_{2}, W\right) \\
& \quad=\frac{\kappa_{1}+\kappa_{2}}{[L(L+1)]^{1 / 2}} \int_{0}^{\infty} r^{2} \mathrm{~d} r h_{L}^{1}(W r)\left(f_{\kappa_{1}}\left(p_{1} r\right) g_{\kappa_{2}}\left(p_{2} r\right)+g_{\kappa_{1}}\left(p_{1} r\right) f_{\kappa_{2}}\left(p_{2} r\right)\right) \tag{6}
\end{align*}
$$

By using finite expansion for the spherical Hankel function,

$$
\begin{equation*}
h_{L}^{(1)}(W r)=-\mathrm{e}^{\mathrm{i} W_{r}} \sum_{n=1}^{L+1} \frac{\Gamma(L+n)}{\Gamma(n) \Gamma(L+2-n)} 2^{1-n} \mathrm{i}^{n-2} \rho^{n-2} \tag{7}
\end{equation*}
$$

and g_{κ} and f_{κ} as given in equation (3), we can express the integrals in equations (5) and (6) as a sum of the following integrals:

$$
\begin{align*}
I(l, m, n)=\int_{0}^{\infty} & \mathrm{d} r r^{\gamma_{1}+\gamma_{2}-n} \exp \left[\mathrm{i}\left(p_{2}-p_{1}+W\right) r\right] \\
& \quad \times{ }_{1} F_{1}\left(\gamma_{1}+l-1+\mathrm{i} \eta_{1}, 2 \gamma_{1}+1 ; 2 \mathrm{i} p_{1} r\right)_{1} F_{1}\left(\gamma_{2}+2-m-\mathrm{i} \eta_{2}, 2 \gamma_{2}+1 ; 2 \mathrm{i} p_{2} r\right) \tag{8}
\end{align*}
$$

where $l, m=1,2$. The above integral can be written in general notation as follows:

$$
\begin{align*}
& I=\int_{0}^{\infty} \mathrm{d} r \mathrm{e}^{-\Delta r} r^{\alpha-1}{ }_{1} F_{1}\left(a_{1}, b_{1} ; k_{1} r\right)_{1} F_{1}\left(a_{2}, b_{2} ; k_{2} r\right) \\
&=\Gamma(\alpha) \Delta^{-\alpha} F_{2}\left(\alpha, a_{1}, a_{2}, b_{1}, b_{2} ; k_{1} / \Delta, k_{2} / \Delta\right) \tag{9}
\end{align*}
$$

For large values of Dirac angular momentum quantum numbers $\kappa_{1}\left(\gamma_{1}\right)$ and $\kappa_{2}\left(\gamma_{2}\right)$, all the five parameters of the F_{2} function become large. In the next section we give the asymptotic expansion of such a function.

3. Asymptotic expansion for the $\boldsymbol{F}_{\mathbf{2}}$ function

We shall use following analytic continuations (see Sud et al 1976) of the F_{2} function:

$$
\begin{equation*}
F_{2}\left(\alpha, a_{1}, a_{2}, b_{1}, b_{2} ; x, y\right)=Q_{1}^{\prime}+Q_{2}^{\prime}+Q_{3}^{\prime} . \tag{10}
\end{equation*}
$$

The $Q_{1}^{\prime}, Q_{2}^{\prime}$ and Q_{3}^{\prime} series are given explicitly as

$$
\begin{equation*}
Q_{1}^{\prime}=\frac{\Gamma\left(b_{2}\right) \Gamma\left(a_{2}-\alpha\right)}{\Gamma\left(a_{2}\right) \Gamma\left(b_{2}-\alpha\right)}(-y)^{-\alpha} Q_{1} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
Q_{2}^{\prime}=\frac{\Gamma\left(b_{2}\right) \Gamma\left(\alpha-a_{2}\right) \Gamma\left(b_{1}\right) \Gamma\left(a_{1}+a_{2}-\alpha\right)}{\Gamma(\alpha) \Gamma\left(b_{2}-a_{2}\right) \Gamma\left(a_{1}\right) \Gamma\left(b_{1}+a_{2}-\alpha\right)}\left(\frac{x}{y}\right)^{a_{2}}(-x)^{-\alpha} Q_{2} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& Q_{3}^{\prime}=\frac{\Gamma\left(b_{2}\right) \Gamma\left(b_{1}\right) \Gamma\left(\alpha-a_{1}-a_{2}\right)}{\Gamma(\alpha) \Gamma\left(b_{2}-a_{2}\right) \Gamma\left(b_{1}-a_{1}\right)}(-y)^{-a_{2}}(-x)^{-a_{1}} \\
& \quad \times F_{3}\left(a_{1}, a_{2}, 1-b_{1}+a_{1}, 1-b_{2}-a_{2}: 1+a_{1}-a_{2}-\alpha: 1 / x, 1 / x\right) \tag{13}
\end{align*}
$$

where

$$
Q_{1}=\sum_{m, n} \frac{(\alpha)_{m+n}\left(1-b_{2}+\alpha\right)_{m+n}\left(a_{1}\right)_{m}}{\left(1-a_{2}+\alpha\right)_{m+n}\left(b_{1}\right)_{n} m!n!}\left(\frac{1}{y}\right)^{m}\left(-\frac{x}{y}\right)^{n}
$$

and

$$
Q_{2}=\sum_{m, n} \frac{\left(a_{2}\right)_{n}\left(1-b_{2}+a_{2}\right)_{n}\left(a_{1}+a_{2}-\alpha\right)_{n-m}}{\left(b_{1}+a_{2}-\alpha\right)_{n-m}\left(1+a_{2}-\alpha\right)_{n-m} m!n!}\left(-\frac{1}{x}\right)^{m}\left(-\frac{x}{y}\right)^{n} .
$$

For large values of κ_{1} and κ_{2} all the parameters of the F_{2} function are large but a few parameters of the Q_{1}, Q_{2} and F_{3} series become small. For the Q_{1} series the parameter ($1-b_{2}+\alpha$), for the Q_{2} series the parameter $\left(a_{1}+a_{2}-\alpha\right)$ and for the F_{3} function the parameter $\left(1+a_{1}+a_{2}-\alpha\right)$ are small. We will obtain the asymptotic expansions for Q_{1}, Q_{2} and F_{3} series when one parameter in each series is small.

We describe here in detail the method used to obtain the asymptotic expansion for the Q_{1} series. The Barnes integral representation for the Q_{1} series is given as

$$
\begin{align*}
& Q_{1}(a, b, c: d, e: x, y) \\
& \qquad \begin{aligned}
\Gamma(a) \Gamma(b) \Gamma(c) & \Gamma(d) \Gamma(e) \\
(2 \pi \mathrm{i})^{2} & \int_{-\mathrm{i} \infty}^{+\mathrm{i} \infty} \\
& \mathrm{~d} s \mathrm{~d} t \frac{\Gamma(a+s+t) \Gamma(b+s+t)}{\Gamma(\mathrm{d}+s+t) \Gamma(e+t)} \\
& \times \Gamma(c+s) \Gamma(-s) \Gamma(-t)(-x)^{s}(-y)^{t}
\end{aligned}
\end{align*}
$$

The integrand has the following sequences of poles: an increasing sequences of poles at

$$
s=n, t=n \quad \text { where } n=0,1,2, \ldots
$$

and the decreasing sequence of poles at

$$
s=-c-n \quad \text { where } n=0,1,2, \ldots
$$

The Q_{1} series is obtained by closing the contours in the s and t planes on the right-hand side of the imaginary axis, and integrating by making use of the residue theorem. The asymptotic expression for the $\Gamma(c+s)$ for large values of c (Erdélyi et al 1953) is given as

$$
\begin{equation*}
\Gamma(c+s) \sim(2 \pi)^{1 / 2} \mathrm{e}^{-c} \mathrm{e}^{s+c-\frac{1}{2}}, \tag{15}
\end{equation*}
$$

when $c \rightarrow \infty$; if $|\arg (s+c)| \leqslant \pi-\delta,|\arg c| \leqslant \pi-\delta$, where δ is any positive parameter. On substituting in equation (14), the asymptotic values of the gamma functions $\Gamma(a+s+t)$, $\Gamma(c+s), \Gamma(d+s+t)$ and $\Gamma(e+t)$, for large values of their parameters a, c, d and e, we obtain

$$
\begin{align*}
& Q_{1}(a, b, c: d, e: x, y) \\
& \qquad=\frac{1}{\Gamma(b)} \frac{1}{(\pi \mathrm{i})^{2}} \int_{-i \infty}^{+i \infty} \int_{-\infty} \mathrm{d} s \mathrm{~d} t \Gamma(b+s+t) \Gamma(-s) \Gamma(-t)\left(-\frac{a c}{d} x\right)^{s}\left(-\frac{a}{d e} y\right)^{\prime} \tag{16}
\end{align*}
$$

Integrating equation (16) by enclosing the contours in s and t planes on the right-hand side of the imaginary axis by using the residue theorem:

$$
\begin{equation*}
Q_{1}(a, b, c: d, e: x, y)=\sum_{m, n} \frac{(b)_{m+n}}{m!n!}\left(\frac{a c}{d} x\right)^{m}\left(\frac{a}{d e} y\right)^{n} . \tag{17}
\end{equation*}
$$

Similarly, we can obtain the asymptotic expansions for Q_{2} and F_{3} series:

$$
\begin{equation*}
Q_{2}(a, b, c: d, e: x, y)=\sum_{m, n} \frac{(c)_{n-m}}{m!n!}(d e x)^{n}\left(\frac{a b}{d e} y\right)^{n} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}: c: x, y\right)=\sum_{m, n} \frac{1}{(c)_{m+n} m!n!}\left(a_{1} b_{1} x\right)^{m}\left(a_{2} b_{2} y\right)^{n} . \tag{19}
\end{equation*}
$$

On substituting the asymptotic expansions for Q_{1}, Q_{2} and F_{3} functions (as given by equations (17), (18) and (19)) in equation (10), we obtain the asymptotic expansion of the F_{2} function when all of its five parameters have large values:

$$
\begin{align*}
F_{2}\left(\alpha, a_{1}, a_{2},\right. & \left.b_{1}, b_{2}: x, y\right) \\
= & \left(\frac{\Gamma\left(b_{2}\right) \Gamma\left(a_{2}-\alpha\right)}{\Gamma\left(a_{2}\right) \Gamma\left(b_{2}-\alpha\right)}(-y)^{-\alpha}\right) \sum_{m, n} \frac{\left(1-b_{2}+\alpha\right)_{m+n}}{m!n!}\left(\frac{\alpha a_{1}}{\left(1-a_{2}+\alpha\right) y}\right)^{m} \\
& \times\left(-\frac{\alpha}{\left(1-a_{2}+\alpha\right) b_{1}} \frac{x}{y}\right)^{n}+\frac{\Gamma\left(b_{1}\right) \Gamma\left(b_{2}\right) \Gamma\left(a_{1}+a_{2}-\alpha\right) \Gamma\left(\alpha-a_{2}\right)}{\Gamma(\alpha) \Gamma\left(b_{2}-a_{2}\right) \Gamma\left(a_{1}\right) \Gamma\left(b_{1}+a_{2}-\alpha\right)}\left(\frac{x}{y}\right)^{a_{2}}(-x)^{-\alpha} \\
& \times \sum_{m, n} \frac{\left(a_{1}+a_{2}-\alpha\right)_{n-m}}{m!n!}\left[\left(b_{1}+a_{2}-\alpha\right)\left(1+a_{2}-\alpha\right) x\right]^{n} \\
& \times\left(\frac{a_{2}\left(1-b_{2}+a_{2}\right) y}{\left(b_{1}+a_{2}-\alpha\right)\left(1+a_{2}-\alpha\right)}\right)^{m}+\frac{\Gamma\left(b_{1}\right) \Gamma\left(b_{2}\right) \Gamma\left(\alpha-a_{1}-a_{2}\right)}{\Gamma(\alpha) \Gamma\left(b_{2}-a_{2}\right) \Gamma\left(b_{1}-a_{1}\right)}(-y)^{-a_{2}}(-x)^{-a_{1}} \\
& \times \sum_{m, n} \frac{1}{\left(1+a_{1}+a_{2}-\alpha\right)_{m+n}} \frac{1}{m!n!}\left(\frac{a_{1}\left(1+a_{1}-b_{1}\right)}{x}\right)^{m}\left(\frac{a_{2}\left(1+a_{2}-b_{2}\right)}{y}\right)^{n} . \tag{20}
\end{align*}
$$

The expression given in equation (20) may be used to compute the radial integrals involving higher angular momentum components in the electron wavefunctions.

References

Erdélyi A, Magnus W, Oberhettinger F, and Tricomi F C 1953 Higher Transcendental Functions voi. 1 (New York: McGraw-Hill)
Gargaro W W and Onley D S 1971 Phys. Rev. C 41032
Rose M E 1961 Relativistic Electron Theory (New York: Wiley)
Slater L J 1966 Generalized Hypergeometric Functions ((Cambridge: Cambridge University Press)
Sud K K and Wright L E 1976 J. Math. Phys. 171719
Sud K K, Wright L E and Onley D S 1976 J. Math. Phys. 172175
Überall H 1971 Electron Scattering from Complex Nuclei (New York, London: Academic)

